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FOREWORD

Microwave radiation at high harmonics of the electron cyclotron frequency
is generated from a cusptron device. An axis-rotating beam of 30 kV, 3.5 A,
4 ps, and 60 pps interacts with modes in a six-vane circuit by the negative
mass instability. Radiation power is more than 10 kW with approximately 10
percent electronic efficiency at 6.0 GHz, which corresponds to the sixth
harmonic of the electron cyclotron frequency. With the same circuit and a 28
kV, 1.5 A beam, we also obtained approximately 4.0 kW radiation with 9.5
percent efficiency at the fourth harmonic frequency of 3.9 GHz. This work was
supported in part by the Independent Research Fund at the Naval Surface
Weapons Center and in part by the Office of Innovative Science and Technology
of the Stategic Defense Initiative Organization managed by the Harry Diamond
Laboratories.
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CHAPTER 1

INTRODUCTION

A compact and high-power microwave and millimeter wave source is in great
demand for various practical applications in particle accelerators, communica-
tions, radars, plasma heating, and others. Since most high-power devices use
electron beams and magnetic fields, operation at lower voltages and lower
magnetic fields is required to be a compact device. Recently, there has been
intense research on new high-power electromagnetic radiation sources, e. g.,
gyrotrons, free electron lasers, and relativistic magnetrons. However, they
use either high voltage beams requiring a bulky power supply and/or high
magnetic fields commonly obtainable from superconducting magnets. Therefore,
a device which operates at a high harmonic of the electron cyclotron frequency
using a low energy beam holds promise as a compact and high-power tube.

Powerful microwave radiation has bIen observed from axis-rotating
electron beams (E layers) in the Astron for plasma confinements and in
Electron Ring Accelerators 2 for collective ion accelerations. The interacting
mechanism between E layers and the modes-of h conducting boundaries has been
identified as the negative mass instability. ' It induces uniform E layers
to be azimuthally bunched, and beam energy is thereby transferred to wave
energy. In most experiments with smooth conducting walls, the radiation
spectra have shown many harmonic frequencies, for example, harmonic numbers up
to 40. Recently, the mode competition has been controllgd by introducing
multivane circuit similar to anode blocks in magnetrons. In contrast to
these relativistic devices, the cusptron microwave tube uses low-energy, axi:-
rotating electron beams and a multivane circuit to control mode competition.
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CHAPTER 2

EXPERIHENTAL APPARATUS

The experimental setup of the Naval Surface Warfare Center (NSWC) cusptron

is shown schematically in Figure 1. The magnetic cusp field is produced by
three independently controlled power supplies to the coils. The cusp transitiov
width is narrowed substantially by a soft iron plate placed between the second
and third coils. The transition length has been measured as 4.8 mm, which is
determined by the FWHH of the radial magnetic field at the beam radius. The

system vacuum is maintained by ion pumps at lower than 1x10- 8 Torr.

A hollow electron beam is produced from an annular thermionic cathode of
1.5 cm radius and 0.2 cm radial width with a Pierce type focusing electrode.
The cathode assembly is mounted on a bellows coupled pipe for its alignment,
and the cathode-anode gap can be adjusted without breaking system vacuum. An
anode with an annular slit supported by three bridges is attached to an iron
plate. A 0.2 cm wide annular slit allows the cylindrical beam to pass through
the magnetic cusp transition region where the (vzXBr) force effectively
converts the beam axial velocity into the azimuthal velocity on the downstream
side of the cusp transition. The downstream beam current is monitored by a
pickup loop to a ground lead from the downstream chamber, which is
electrically insulated by a vacuum break. A six-vane circuit for the beam-
wave interaction is placed at 4.0 cm downstream from the iron plate. This
axial gap allows the beam envelope to be expanded in the cusp transition
region without destruction. The circuit design is based on theoretical
studies for the resonant jtT9 action between an E layer of 25 keV and the
sixth harmonic frequency.

3/4
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CHAPTER 3

MODES IN MULTIVANE CIRCUITS

The six-vane RF circuit is utilized to encourage the sixth harmonic
interaction (see Figure 2 for its cross section). Due to the presence of the
periodic interruptions in the azimuthal direction, the individual azimuthal
mode number is no longer an eigennumber, and the cusptron RF eigenmode is an
infinite sum of certain azimuthal modes in a circular cylinder. In order to
emphasize this different grouping of the RF azimuthal modes, we devise a new
convention of the (ij)-mode designation. In this convention, the first
number i is the primary azimuthal mode number that determines the phase
difference of the neighboring resonators, and the two numbers i and j are the
first two available RF azimuthal mode numbers. Also the sum of the two
numbers represents the number of the vanes. In the six-vane circuit, there
exist four different modes; the (0,6), (1,5), (2,4), and (3,3)-modes. The
(2,4)-mode can interact with either the second or the fourth harmonic
frequencies. In magnetrons, the (0,6)- and (3,3)-modes are 2r- and w-modes,
respectively.-V.

The peculiar property of the azimuthal mode mixture in this circuit may
be understood with a simple argument given in Figure 2, where the azimuthal
electric fields at openings of resonators are drawn. Here the azimuthal angle
is linearly stretched for simplicity. The conducting wall forces the field to
vanish except at the openings. The fields at the openings are assumed to be
constant, and the phase information is enforced via the primary azimuthal mode
number. The eigenmodes thus obtained are shown with the solid line in the
squaze wave forms. Obviously, these square waves cannot be represented by a
single sinusoidal wave, and the Fourier components of these square waves
determine the amplitude of the partial azimuthal modes. The first two Fourier
components are shown with broken and dotted lines. One notes that the
different modes have different partial azimuthal modes, and they do not
overlap. One also notes that the amplitude for the second partial mode is
comparable to that for the first, e.g., 6 and 0 for the (0,6)-mode. For the

09A present purpose, the (0,6)-mode has sufficient amplitude for azimuthal mode 6
to interact with the six bunches of the electron beam in producing the sixth
harmonic.
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The cross section and dimensions of the six-vane circuit are shown in
Figure 3 along with the vacuum dispersion relations and the interaction region
in the magnetic field. The axial length of the circuit is 40 cm long with a
slight tapered section at the front end. One notes from the dispersion curves
in Figure 3(c) that the (0,6)-mode is not the lowest frequency in the circuit,
but it can be selected for the interaction by adjusting the magnetic field such
that the sixth harmonic frequency intercepts the dispersion curves as shown in
Figure 3(d), where the Doppler shift term of the beam modes is not taken into
account for simplicity.

6
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CHAPTER 4

EXPERIMENTAL RESULTS

The diode is operated at 25-30 kV, 4 ps, 60 pps, and 0.6-1.0 pperv. The
current of the axis-rotating beam is typically 1.5-3.5 A depending on magnetic
field configurations. The applied magnetic fields are 180-270 G in the diode
region and 340-490 G in the circuit region. The block diagram for radiation
diagnostics is shown in Figure 4. Radiation is detected by a C-band standard
gain horn antenna located beyond a circular pipe of 15 cm O.D. and 30 cm
length which guides radiation from the downstream viewport to the receiving
horn antenna. For ghe maximum gain configuration between the transmitting and
receiving antennas, the horn antenna is positioned with a polar angle of 10-
200. The radiation frequency is accurately determined by a storage spectrum
analyzer (HP-8569B). The output power is measured by a power meter (HP-432B)
and by a calibrated crystal detector from the attenuated signals. O e notes
that the total attenuation of microwave power to the crystal detector is more
than 63 dB, since 60 dB is the sum of attenuators used, and 3 dB is from the
polarization effect of the coupling between the circular polarization of the'
radiation fields and the linear polarization of the waveguide fields.8

There are two operating regimes in this setup. One generates radiation
of more than 10.0 kW about 6.0 GHz, and the other yields 4.0 kW around 3.9 GHz
from interactions with the sixth and fourth harmonics of the electron
cyclotron frequency, respectively. They are separated slightly in the applied
magnetic field strength in the circuit region.

The oscilloscope and the spectrum analyzer traces are shown in Figures 5
and 6 for the (0,6)-mode excitation by the sixth harmonic interaction. In
Figure 5, the detector signal attenuated by more than 63 dB, is 520 mV
corresponding to microwave output power of approximately 10.4 kW (top
trace). The current of the axis-rotating beam is 3.5 A (middle trace), and
the beam energy is 30 keV (bottom trace). The electronic efficiency is about
10 percent in this case. The spectrum analyzer trace in Figure 6 shows that
the radiation frequency is 6.0 GHz with no other components in the 3.5-8.5 GHz
band within the 60 dB dynamic range. For the sixth harmonic interaction at
6.0 GHz, the required magnetic field is only 380 Gauss.

For the fourth harmonic interaction, typical data are shown in Figures 7
and 8. The top trace in Figure 7 shows that radiation power is approximately
4.0 kW. The middle trace shows an axis-rotating beam current of 1.5 A, and
the bottom trace shows that the beam energy is 28 keV. In this case, the
electronic efficiency is about 9.5 percent. The spectrum analyzer trace in

7
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Figure 8 shows that the radiation frequency is 3.9 GHz, and it is the only
frequency detected in the 3.5-8.5 GHz band. In both cases, radiation
frequencies are a direct function of the magnetic field strength in the
circuit region, i.e., a tunable device as observed previously. The range of
frequency tuning is about 10 percent with respect to the cutoff frequency of
each mode. We observed also that the magnetic field in the circuit region
should be increased from that for the sixth harmonic case while the magnetic
field in the diode region should be decreased. It may be compared with the
fact that the (2,4)-mode requires slightly higher magnetic fields than that
for the (0,6)-mode in Figure 3(d).

4I 8
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CHAPTER 5

CONCLUSIONS

Microwave radiation of 10.4 kW at 6.0 GHz has been generated by the sixth
harmonic interaction of an axis-rotating beam of 30 keV and 3.5 A with the

(0,6)-mode in a six-vane circuit. The electronic efficiency is approximately

10 percent. In addition, the fourth harmonic frequency has been generated
with the same six-vane circuit. In this case, the (2,4)-mode has been excited
by an axis-rotating beam of 28 keV and 1.5 A. The output power is
approximately 4.0 kW at 3.9 GHz, and the electronic efficiency is 9.5
percent. The cusptron holds promise as an efficient, compact, and also
tunable microwave tube suitable for many applications including high-power
amplifiers for future accelerators.16
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